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Abstract: - A complimentary probabilistic and evidence theory approach is utilized to enhance uncertainty 
assessments in the area of critical safety characteristics for conceptual design.  This research provides 
additional exploration into the failure modes necessary to utilize Fiber Reinforced Polymer (FRP) and various 
composites to their fullest potential and to minimize uncertainty by comparing probability and evidence 
theories.  This combined approach has been applied to a selection of composite material that could provide 
uncertainty assessment design for a space transportation system. Uncertainty estimates presented are bounded 
by belief and plausibility functions. The results may provide additional information to the decision makers in 
critical system safety and uncertainty assessments.  Benefits and limitations are discussed. 
 

Key-Words: - Composite Material, Uncertainty, Probability theory, Evidence theory. 
 

1 Introduction 
In conceptual design of composite material used in 
space exploration vehicles, quantifying operational 
uncertainty and performing risk analysis is a 
challenging task mainly due to lack of data.  Asking 
disciplinary experts for their "best expert judgment" 
may sometimes be the only option available.  Expert 
judgment (EJ) methodologies were utilized in prior 
studies for quantifying input parameter uncertainty 
as probability distributions so that probabilistic risk 

analysis studies can be conducted [1]. Data obtained 
utilizing EJ can in many cases provide a basis for 
analysis and interpretation of significance of risk 
[2].  Through the use of EJ, prior studies introduced 
an approach to quantify critical system design 
parameter uncertainty as probability distributions 
[3]; however, there is significant uncertainty in these 
judgments and a probabilistic assessment alone may 
not be sufficient. 
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This study explores a complimentary 
probabilistic and non-probabilistic approach for 
uncertainty assessment in conceptual design. A 
comparison of two theories is conducted: the 
probability theory and evidence theory. Application 
used as an example was the composite material for a 
Space Exploration Vehicle (SEV) to assess the level 
of uncertainty using expert judgment elicitation and 
the combined methods of probabilistic and non-
probabilistic approach. The extension of the efforts 
to define the development of a more robust 
approach for uncertainty assessment is explored 
through evidence theory [4]-[16]. Evidence theory 
provides a promising addition to current 
probabilistic uncertainty assessment practices, and 
the combination of the approaches may allow for a 
more realistic representation of the implications of 
uncertainty, given the complex nature of real world 
problems. 
 

 

2 Comparison of Probabilistic versus 

Evidence theories 
For several centuries, the idea of numerical degree 
of belief has been identified in both popular and 
scholarly form with the idea of chance:  The two 
ideas are united under the name probability [6]. 
Aleatory uncertainty is a chance of a descriptive 
experiment, such as the throw of a dice or the toss of 
a coin [6].  Another example is the variations due to 
the physical system of the environment in the 
fatigue life of compressor and turbine blades, which 
are referred to as variability, irreducible, stochastic 
and random uncertainty [11].  Figure 1 represents 
the two forms of uncertainty and the means with 
which the information could be used properly to 
develop a quantification strategy based on the 
characteristics of the information. 
 

2.1 Probabilistic Approach 
Probability theory provides a mathematical structure 
traditionally used in the representation of aleatory 
(i.e., random) uncertainty for well-known systems.   
Aleatory uncertainties are typically modelled as 
random variables described by probability 
distributions.  A probability in this case refers to the 
number of times an event occurs divided by the total 
number of trials.  For instance, the flipping of a truly 
fair coin would have a probability of landing on 
heads of 0.5, indicating that for every N trials, the 
coin would land heads up, 0.5*N times.  In order to 
attain the actual probability for an event, an 
experiment would have to be repeated an infinite 
number of times. 

 
 
Fig. 1 - Uncertainty quantification strategy [10] 
 

Since this is impossible, decision makers 
typically make assumptions about the characteristics 
of the probabilities (i.e. the mean and variances).  
Given the lack of operational data in conceptual 
design for one-of-a-kind systems, one may have to 
rely on expert judgment data obtained by a 
probability elicitation method to quantify CDFs in 
representing uncertainty.  The use of expert 
judgment or opinion to aid in decision-making is 
well known.   

Based on Baenen, Bayesian belief networks are 
rooted in traditional subjective probability theory, 
which builds on the foundation of Pascalian 
calculus.  In subjective probability theory, the 
probability of a proposition represents the degree of 
confidence an individual has about that 
proposition’s truth.  This matches quite well to our 
knowledge base of information from a human expert 
in addition to his or her subjective beliefs about the 
accuracy of that information [22].  Before Bayesian 
belief networks are described, we must begin with 
the fundamentals of probability theory.  Let A be 
some event within the context of all possible events 

E, within some domain, such that A ∈ E and E is the 
event space. 

The probability of A occurring is denoted by 
P(A).  P(A)  is the probability assigned to A prior to 
the observation of any evidence and is also called 
the apriori probability. This probability must 
conform to certain laws [22].  First, the probability 
must be non-negative and must also be less than 
one; therefore, 

    

    (1)
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A probability of 0 means the event will not occur 
while a probability of 1 means the event will always 
occur.  Second, the total probability of the event 
space is 1 or in other words the sum of the 
probabilities of all of the events Ai in E must equal 1 
[22]. 
     

    (2) 
             

Finally, we consider the compliment of A, A, 
which is all events in E except for A. 
From equation (2) we then get: 
     
 P(A) + P( ¬ A) = 1                        (3) 

                                  
Now consider another event in E, B such that       

E ∈ B.  The probability that event A will occur 
given that event B has occurred is called the 
conditional probability of A given B and is 
represented by      P(A | B) [22].  The probability that 
both A and B will occur is called the joint 
probability and is defined by P(A | B) .  P(A | B) is 
defined in terms of the joint probability of A and B 

by: 
     

 B) |P(A 

 B)P(A 
  B) |P(A 

 ∩
=

                          (4)
                           
Equation (4) can be further manipulated to yield 
Bayes Rule: 
    

 P(B)

 P(A)  X  A) | P(B
  B) |P(A 

 
=

              (5) 
                                    
If these two events are independent, in that the 
occurrence of one event has no effect on the 
occurrence of the other, then P(A | B) = P(A) and 
P(B | A) = P(B) [22].  If we derive equation 5 still 
further we get: 
 

 A)P(  X  A) | [P(BP(A)]  X  A) | [P(B

 P(A)  X  A) | P(B
  B) |P(A 

¬+

 
=

  (6)
                                                                   

This lays the foundation for managing and 
deriving uncertainty using probability theory in 
expert systems.  It allows us to turn a rule around 
and calculate the conditional probability of A given 
B from the conditional probability of B given A.  
Some of the advantages of Bayesian belief networks 
are that the representation is visual and easy to 
understand.  It is also relatively straightforward to 
implement as the methodology for combining 
uncertainty follows set rules and procedures.  

Probability theory is a well-refined method for 
dealing with knowledge of unknown certainty [17].  
The CDF describes the probability distribution of a 
random variable X.  For every real number x, the 
distribution function of X is defined by: 
                
  F(x) = P(X ≤ x)                           (7)
                            
where the right of x represents the probability that X 
takes on a value less than or equal to x and the left 
of x represents the probability that X takes on a 
value greater than x. The probability that X lies in 
the interval [a, b] is, therefore, F(b) − F(a) if a < b  
[18]. 

In this research, the analysis of how often the 
random variable is above a particular level.  This is 
referred to “the exceedance question” and is 
necessary for the correlation with Evidence theory 
[23]. This graphical analysis called the 
complementary cumulative distribution function 
(CCDF), which can be defined by: 
       
              Fc(x) = P(X > x) = 1 – F(x)                      (8) 

 
The knowledge of subject matter experts (SMEs) 

has been “mined” in many disciplines (such as 
medicine, weather forecasting, and military tactics) 
to provide estimates for parameters associated with 
yet-to-be-developed systems [2][3]. 

A probability elicitation method may be any aid 
that is used to acquire a probability from an expert 
[18]. Generally, a distinction is made between direct 
and indirect methods.  With direct methods, experts 
are asked to directly express their degree of belief as 
a number, be it a probability, a frequency or an odds 
ratio.  For expressing probabilities, however, people 
prefer to express their beliefs linguistically rather 
than numerically. This is likely because the 
ambiguity of words captures the uncertainty they 
feel about their probability assessment; the use of 
numerical probabilities can produce considerable 
discomfort and resistance among those not used to it 
[19].  In addition, since directly assessed numbers 
tend to be biased, various indirect elicitation 
methods have been developed to quantify 
parameters of a CDF for uncertainty [11]. 

CCDF curve is typically obtained by sampling 
based techniques and are, therefore, approximate. 
“These distributions mathematically describe a 
degree of belief, based on all of the available 
evidence (e.g., data, background knowledge, 
analysis, experiments, expert judgment), of the 
range and weight, in terms of likelihood, of the input 
values used in the analysis” [23].  The 
complementary nature of the CCDF results in the 

¬
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right of x representing the probability that X takes 
on a value greater than or equal to x and the left of x 
representing the probability that X takes on a value 

less than x.   
However, probabilistic approaches to uncertainty 

assessment have been criticized for lacking the 
capability of capturing epistemic uncertainty [12].  
Klir notes that as a consequence of this criticism, 
supporting theories have been developed and 
categorized into the “fuzzy measure theory” [13].  
One such approach, evidence theory, takes into 
account aleatory and epistemic uncertainty that is 
bounded by the belief and plausibility functions 
[Bel(Ai), Pl(Aj)] and is found without any 
assumptions made on the information obtained from 
the experts [13].  Evidence theory is discussed in 
further detail in the following section. 
 
 

2.2  Evidence Theory 
Evidence theory originated with Arthur Dempster in 
the 1960’s and was expanded by Glen Shafer in the 
1970’s [4][5][6].  In evidence theory, uncertainty is 
separated in Belief (Bel) and Plausibility (Pl), 
whereas traditional probability theory uses only the 
probability of an event to analyze uncertainty [11]. 
Belief and plausibility provide bounds on 
probability.  In special cases, they converge on a 
single value, probability.  In other cases, such as in 
the evidence theory representation of uncertainty, 
they represent a range of potential values for a given 
parameter, without specifying that any value within 
the range is more or less likely than any other. The 
Dempster-Shafer evidence theory has three 
important functions: the basic probability 
assignment function (BPA or m), the Belief function 
(Bel), and the Plausibility function (Pl) [11].  These 
three functions can be viewed as alternate 
representations of uncertainty regarding the same 
parameter x [11].   

The basic probability assignment (BPA) is a 
primitive of evidence theory.  BPA does not refer to 
probability in a classical sense; rather, it defines a 
mapping of the power set to an interval between 0 
and 1.  The value of the BPA for a given set A 
(represented as m(A)), expresses the proportion of 
all relevant and available evidence that supports the 
claim that a particular element of X (the universal 
set) belongs to the set A but to no particular subset 
of A [4]-[7].  From the basic probability assignment, 
the upper and lower bounds of an interval can be 
defined [7].  

This interval contains the precise probability of a 
set of interest (in the classical sense) and is bounded 
by two non-additive continuous measures called 

Belief and Plausibility.  In addition to deriving these 
measures from the basic probability assignment (m), 
these two measures can be derived from each other. 
For example, Plausibility can be derived from Belief 
in the following way: 
       

               Pl(A) = 1 – Bel(Ā )                (9)     
                              
where A is the classical complement of subset A 

[4][5][6]. This definition of Plausibility in terms of 
Belief comes from the fact that all basic assignments 
must sum to 1. 
      
   
               (10)
      
          
               (11) 
      
      
  Pl(A) = 1 – Bel(Ā )          (12) 
           
From the definitions of Belief and Plausibility, it 
follows that Pl(A) = 1 – Bel(Ā ). As a consequence 
of Equations 11 and 12, given any one of these 
measures (m(A), Bel(A), Pl(A)), it is possible to 
derive the values of the other two measures. 
The precise probability of an event (in the classical 
sense) lies within the lower and upper bounds of 
Belief and Plausibility, respectively. 

                 

Bel(A) = P(A) = Pl(A)              (13)             
  

The probability is uniquely determined if         
Bel(A) = Pl(A).  Otherwise, Bel(A) and Pl(A) and 
may be viewed as lower and upper bounds on 
probabilities respectively, where the actual 
probability is contained in the interval described by 
the bounds [8]. Upper and lower probabilities 
derived by the other frameworks in generalized 
information theory cannot be directly interpreted as 
Belief and Plausibility functions [9].  In other 
words, the basic belief assignment is not a 
probability, but just a belief in a particular 
proposition irrespective of other propositions.  This 
structure gives the flexibility to express belief for 
possible propositions with partial and insufficient 
evidence [10][11].  According to Belief and 
Plausibility Functions, the likelihood for Event A 
lies in the interval [Bel(A), Pl(A)] and may be shown 
as in Figure 2 [10]. 
 

Bel (Ā) =  ∑ m(B) = ∑ m(B) 

    ∑ m(B) = 1 - ∑ m(B) 
    B | Bφ Ā                   

B | B 1 A ≠ Ø
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Fig. 2-Belief (Bel) and Plausibility (PL) relationship 
[2]. 
  
Dempster-Shafer [4][5][6] methods of Evidence 
Theory may be applied by identifying the upper 
limit of uncertainty called Cumulative Plausibility 
Function (CPF) and lower limit of uncertainty called 
Cumulative Belief Function (CBF).  Figure 3 shows 
a graphical representation.   
 

 
Fig. 3 - Graphical Representation of CPF and CBF 
 
Both probability theory and evidence theory are 
applied to a case study in the following section. 
 

 

3  Case Study  

3.1 Using FRP as space material 
This research extends the current studies on 
composite and fiber reinforced plastic (FRP) 
material and their viable application as space 
material.  A design for composite material was 
selected to incorporate an uncertainty assessment 
using expert judgment elicitation through a 
combined probabilistic and non-probabilistic, 
evidence theory approach.  Three variables were 
chosen that would lead to a critical subsystem 
failure of the material during its lifecycle.  It was 
thought that critical subsystem failures may be a 
function of Construction (production), Installation 
(debonding of tiles) and Operations (such as, debris 
damage at lift-off that causes burn through). These 
failures were:  
 

1. Construction anomalies that can occur during 
composite material production 

2. Installation anomalies that may lead to the 
possibility of de-lamination of FRP  

3. Operations anomalies that may result from 
debris damage at any time during mission, and  

4. All combinations of the three anomalies 
 

Figure 4 shows the process that was followed in 
analysing the composite material.  

A pre-selected panel of three NASA systems 
engineers with significant knowledge of such a 
system agreed to participate in this study.  This pre-
selected team of experts played a key role in the 
design and structural testing needed during the past 
and future development of composite material.  An 
expert judgment elicitation questionnaire was 
developed to quantify potential anomalies for this 
study [1][2][3].  Once the data was collected, a 
normalization factor was applied to each expert’s 
input to comply with Evidence theory.   

 
 

 
 
Fig. 4 - Combined approach for uncertainty 
assessment 
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The results from each expert were then utilized in 
constructing cumulative distribution functions 
(CDF) and determining belief and plausibility 
measures.   

 The questionnaire followed a combination of 
various methodologies [1][2][3]. The experts were 
asked to consider the input parameters and select an 
option representing the believed assessment based 
on the given selection of anomalies and the nominal 
values.  Through the questionnaire, each expert was 
asked the likelihood of each scenario. The experts 
provided low, moderate and high likelihood values 
for each anomaly.   

The experts also provided their personal opinion 
as to which of the values is most likely to occur.  
The answers of the questionnaire were used to 
develop the basic assignment of each expert in an 
additive manner to compute the unions of belief and 
plausibility measures.  Then the aggregated results 
were input into a Monte Carlo simulation using 
@RISK® software [20], in order to generate 
distribution data for the experts’ input parameters.  

Finally, limits of uncertainty were derived and 
conveyed in a graphical representation that may 
potentially enable decision makers to better assess 
uncertainty levels presented by multiple experts in 
high-risk environments.  The questionnaire was 
designed specifically to serve as a means of dual 
analysis: First, probability theory is utilized to 
addresses the probability of the occurrence of an 
event (system failure due to an anomaly) and 
second, evidence theory is used to addresses the 
degree of uncertainty of whether an event will 
occur. The bounds provided by evidence theory 
provide more accurate estimates of the uncertainty 
presented in these real world environments than the 
point estimates provided by traditional probability 
theory.  
 
 

3.2 Probabilistic risk assessment 
The questionnaire was used to collect each expert’s 
assessments of  possible percentage of anomalies 
that can lead to critical failure of the composite 
material due to problems in construction (C), 
installation (I), operations (O), and their possible 
combinations [construction union Installation (CUI), 
construction union operations (CUO), installation 
union operations (IUO), and due to construction 
union installation union operations (CUIUO)]. 
 Throughout the questionnaire, each expert was 
asked the likelihood of each scenario and was also 
asked to provide low, moderate and high likelihood 
values of anomaly (in percentage) that can result in 
a critical system failure.  The experts also provided 

their personal opinion as to which of the values is 
most likely to occur.  Figure 5 presents each 
expert’s assessments for construction, installation, 
operations, and the unions in minimum, most likely, 
and maximum likelihood numbers.  
 
 

 
 

Fig. 5- Expert Assessment for likelihood of 
Anomalies 

 
 Triangular distributions were constructed from 
this expert assessment data in terms of minimum (a), 
most likely (c) and maximum values (b). Next, a 
Monte Carlo simulation was performed by sampling 
from these triangular distributions to determine the 
overall likelihood of any critical failure. This 
operation was done using the @RISK® software 
[20]. The CDF curves for the overall likelihood of a 
critical failure were constructed for each expert.   
 The CDF curve in Figure 6 was developed as a 
result of the responses of Expert 1 and indicates that 
it is this Expert’s opinion that if approximately fifty 
percent of the previously defined anomalies occur 
(which can take the form of any combination of 
construction, installation and operation), total 
system failure is most likely to take place.   
 Although system failure is still possible, a ten 
percent occurrence of the defined anomalies overall 
would not nearly be as great a risk in the opinion of 
Expert 1.  
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Fig. 6 - CDF for Expert 1 

 The CDF curve in Figure 7 for Expert 2 was 
developed as a result of the responses of Expert 2 
and indicates that it is this expert’s opinion that if 
approximately ten percent of the anomalies occur, 
total system failure is most likely to take place.  As 
a matter of fact, it is this expert’s opinion that just 
about any occurrence of anomalies will result in 
catastrophic system failure.   

 
 

Fig. 7 - CDF for Expert 2 

 The CDF curve in Figure 8 was developed as a 
result of the responses of Expert 3.  This expert’s 
bounds are largely similar to those of Expert 1; 
however, the difference in the shape of the curve is 
an indicator of the variance of the options selected.  
The curve based on the opinion of Expert 3 is more 
linear than Expert 1’s curve. 

     
 

Fig. 8 - CDF for Expert 3 

 

 In probabilistic terms, the more likely outcomes 
are in the range where the cumulative curve is the 
“steepest” [21].  Based on the probabilistic results 
presented by the three experts, one might select 
Expert 2 as the most certain; however, the results do 
not supply sufficient information to lead to such a 
conclusion. 

 

3.3  Non-probabilistic risk assessment using 

Evidence theory 

The expert assessments from the questionnaire were 
also incorporated into the basic probability 
assignment (m) of the Evidence theory for the 
computation of the Belief (lower) and Plausibility 
(upper) limits of uncertainty;  however, before 
beginning the computations, the basic probability 
assignment must be normalized such that 
summation of all inputs (Failure Causes) equal to 
one as follows:   
 
                               ∑

∈

=
xPAall

Am 1)(                   (14) 

     
 The next step is to substitute the normalized 
basic assignments into m1 basic assignment column.  
Figure 8 lists the possible failure causes based on 
Dempster-Shafer’s Belief and Plausibility functions 
as follows: 
 

• The first three failure causes (C, I, & O) or 
subsets are directly mapped into the belief 
column.   

• The values of CUI are the additive values of C, 
plus I, plus CUI.   

• The values of CUO are the additive values of 
C, plus O, plus CUO. 

• The values of IUO are the additive values of I, 
plus O, plus IUO. 

• The assignment of CUIUO was computed 
based on the equation shown, to obtain a total 
of one for the assignments provided by each 
expert. 

 
The belief and plausibility measures were computed 

based on the following equations for any set Ai∈Px: 
 
                      

∑=
⊆

)()( ij AmABel
ij AAall

           

                (15)

          
∑=

∅≠∩

)()( ji AmAPl
AiAall j    

                                       (16) 
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Fig. 9 - Dempster-Shafer’s Belief and Plausibility 
for Experts 1 and 2 

 As an example, Figure 9 shows that belief for 
Failure Cause C for Expert 1 is 0.17 and plausibility 
is 0.63.  These numbers indicate a measure of the 
lower and upper limits of uncertainty for Expert 1 as 
expressed by the expert.  A similar operation is 
repeated for Expert 2.  A modification of the 
Dempster-Shafer combination rule was used to 
combine the assessments of Expert 1 and Expert 2 
[4].  Since there were three experts in this study, 
Yager’s rule of combination was used to expand the 
number of experts from two to three [8]. 

The combined judgment generated by Experts 1 
and 2 is transferred into Figure 10 and the third 
expert’s basic assignment is computed.  The results 
produce the combined judgments of all three 
experts. 
 

 
 

Fig. 10 - Yager’s Rule Belief and Plausibility for 
Experts 1, 2 and 3 

Lastly, these bounds or values are converted to a 
cumulative graphic form for each expert, through 
Monte Carlo simulation. The lower bounds or 
minimum value is called Belief and the upper 
bounds or maximum value is called Plausibility. In 
these graphs: 
 

• the y-axis represents the expert’s assessment 
of the likelihood of composite material 
system failure, and  

• The x-axis represents the range of the 
expert’s estimated confidence interval or the 
level of uncertainty. 

 
 Figure 11 is a graphical representation of 
uncertainty based upon the total combined evidence 
obtained from Expert 1 during the elicitation process 
and illustrates the boundaries of belief and 
plausibility of this expert’s hypothesis with regard to 
the unknown parameter.  This unknown parameter is 
the likelihood of system failure due to the pre-
defined anomalies and the various unions.  The 
upper and lower limits shown in this graph are 
indicators of a conservative, minimum risk taking 
expert with equal levels of certainty and uncertainty, 
as evidenced by the wide uncertainty bounds present 
in the figure. 
 
  

 
 

Fig. 11 - Evidence theory Graphical Results for 
Expert 1 

  

The true value may lie anywhere within this 
interval. For example:  If one wants to see a 
confidence interval for Expert 1’s judgment at 
which a 40 percent likelihood of a critical composite 
material’s system failure, the confidence interval is 
between (a) and (b) and, therefore, between 0.30 and 
0.83 (Figure 10).  For comparison purposes, the 
same scale is used for the x-axis and y-axis for all 
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experts and functions are plotted for each expert.  
Figures 11, 12 and 13 show the graphical 
representation of each expert’s belief and 
plausibility judgments. 

 

 
 

Fig. 12 - Evidence theory Graphical Results for 
Expert 2 

 
 Evidence theory allows the decision maker to 
assess the values of the belief (minimum) and 
plausibility (maximum) of an extended cumulative 
distribution function.  If the separating distance 
between minimum and maximum values is as great 
as shown in Figure 12, then the level of uncertainty 
is larger; meaning, that additional data may be 
required before a decision is made. 
 Similar to the previous figure, Figure 12 is a 
graphical representation of uncertainty based upon 
the total combined evidence obtained from Expert 2 
during the elicitation process and illustrates the 
boundaries of belief and plausibility of this expert’s 
hypothesis with regard to the unknown parameter; 
however, Figure 12 shows Expert 2 expressing 
greater levels of uncertainty than Expert 1 (Fig. 11).   
 

 
 

Fig. 13 - Evidence theory Graphical Results for 
Expert 3 

 Figure 13 is the graphical representation of 
uncertainty based upon the total combined evidence 
obtained from Expert 3 illustrating the boundaries of 
belief and plausibility of this expert’s hypothesis 
with regard to the unknown parameter.  Figure 13 
indicates Expert 3 expressing less variance between 
upper and lower limits of uncertainty than Experts 1 
and 2.  The separating distance between minimum 
and maximum values in this figure is much 
narrower than is seen in Figure 12. This indicates 
that the level of uncertainty for this expert is smaller 
by comparison, or the expert has more confidence in 
his/her judgment.  These narrower bounds do not 
necessarily make the results more dependable or 
usable than the other experts but the variation in 
results provides an understanding of the difficulty of 
the problem at hand.   The next section discusses 
the aggregation of these results across experts. 

 

3.4 Aggregation of Probability and Evidence 

Analysis    
In an attempt to further analyze the uncertainty in 
each experts assessment, a parallel scale of each 
expert based on a specific anomaly was developed, 
which could be visualized as a summary of the 
curves.   

 
 
Fig. 14 - Expert assessment of anomalies due to 
Construction 
  

Figure 14 shows possible anomalies that can lead 
to a critical system failure at construction for all 
three experts.  For each expert in Figures 14-16, the 
top line indicates the mean probabilistic response, 
while the lower line shows the difference between 
Belief and Plausibility values taken from Figures 9 
and 10.  As can be expected, the mean of the 
probabilistic results lays within the evidence theory 
bounds for all Experts.  Expert 1’s and 3’s 
probabilistic mean lies at the lower end of their 
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evidence theory bounds.  This means that it is highly 
plausible, based on Expert 1’s and 3’s provided 
information, that an anomaly due to construction is 
far likelier than Expert 2’s probabilistic data 
suggest.  Experts 2’s mean probabilistic values are 
located roughly in the middle of his/her evidence 
theory bounds. 

 
 
Fig. 15 - Expert assessment of anomalies due to 
Installation 
  

Figure 15 demonstrates possible anomalies at 
Installation that can lead to a critical system failure 
for all three experts.  As with Figure 14, as can be 
expected, the mean of the probabilistic results are 
located within the evidence theory bounds.  This 
time, Expert 2’s probabilistic assessment lies in the 
middle of the evidence theory bounds.  Expert 1’s 
and 3’s responses indicate that the anomaly due to 
installation is located at the lower end of his/ her 
evidence theory bounds.  This means it is plausible, 
based on Experts 1’s and 3’s provided information, 
that an anomaly due to installation is far likelier than 
the probabilistic data suggest.  
 

 
 

Fig. 16 - Expert assessment of anomalies due to 
Operations 
  

Figure 16 demonstrates probable anomalies at 
Operations that can lead to a critical system failure 
for all three experts.  Again, it is expected for the 
mean of the probabilistic results to be located within 
the evidence theory bounds for all experts.  All three 
expert’s responses indicate that the anomaly due to 
operations is located at the lower end of his/her 
evidence theory bounds.  There is no operational 
data available at conceptual design phase for most 
complex systems, therefore any estimates can only 
be based on experts’ knowledge with prior or 
similar systems.  Because the assessment of 
uncertainty at conceptual design for the Operations 
area is most challenging for a new space system, 
these results are reasonable and justifiable. 

The above figures indicate the information that 
can be gained from using the combined probabilistic 
and non-probabilistic approach.  Even though 
probabilistic assessments quantify an uncertainty 
range (which was displayed as a mean value for the 
purposes of this analysis), Evidence theory results 
provide comparable information that adds a 
dimension to probabilistic results.  These results 
may indicate that an expert’s confidence in 
assessment maybe much lower than a probabilistic 
assessment alone indicates. 
 
 

4 Conclusion 
In this study a combined probabilistic and evidence 
approach was utilized.  This research provided more 
exploration into the failure modes necessary to 
utilize FRP and composites to their fullest potential 
in an effort to enhance uncertainty assessments in 
critical safety assessments for composite materials 
during conceptual design.  Uncertainty estimates 
obtained from a panel of experts were presented 
bounded by belief and plausibility functions as well 
as probability distributions. The results suggest that 
this combined probabilistic and evidence approach 
may provide additional information to the decision 
maker in critical system safety and uncertainty 
assessments.   

Resulting data from expert judgement elicitation 
was utilized to conduct a probabilistic and evidence 
theory based analysis. Using a graphical approach, 
this study provided various visual representations of 
the experts’ uncertainty assessments. The 
methodology demonstrated in this study enabled the 
capturing of expert confidence in uncertainty 
assessments for complex systems.  A probabilistic 
analysis alone may lead to conclusions that may be 
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misleading without further investigation, while the 
Evidence approach does not provide a concrete non-
probabilistic assessment; rather it provides an 
enhancement of probabilistic analysis. 

During this study, probability theory is utilized to 
address the probability of the occurrence of a 
composite material safety event issue (critical 
system failure due to an anomaly) while evidence 
theory is used to addresses the degree of uncertainty 
of the results.  The results suggest that the 
assessment of uncertainty of experts in high-risk 
environments may be better conveyed to decision 
makers by using both probabilistic and non-
probabilistic theories. Further, the results suggest 
that probability theory provides a single point of 
assessment, allowing the decision maker to rank 
easier among all experts; however, evidence theory 
results provide minimum and maximum values of 
uncertainty and their magnitude can be further 
evaluated. If the gap is large, the decision maker 
might not be able to evaluate this export’s input. 
The literature seems to be in concurrence that the 
use of evidence theory is not fully developed and is 
yet to have widespread applications in the 
engineering field [11].   
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